Generalized Methods and Solvers for Noise Removal from Piecewise Constant Signals

نویسندگان

  • Max A. Little
  • Nick S. Jones
چکیده

Removing noise from signals which are piecewise constant (PWC) is a challenging signal processing problem that arises in many practical scientific and engineering contexts. For example, in exploration geosciences, noisy drill hole records must be separated into constant stratigraphic zones, and in biophysics, the jumps between states and dwells of a molecular structure need to be determined from noisy fluorescence microscopy signals. This problem is one for which conventional linear signal processing methods are fundamentally unsuited. A wide range of PWC denoising methods exists, including total variation regularization, mean shift clustering, stepwise jump placement, running median filtering, convex clustering shrinkage, bilateral filtering, wavelet shrinkage and hidden Markov models. This paper builds on results from the image processing community to show that the majority of these algorithms, and more proposed in the wider literature, are each associated with a special case of a generalized functional, that, when minimized, solves the PWC denoising problem. We show how the minimizer can be obtained by a range of computational solver algorithms, including stepwise jump placement, quadratic or linear programming, finite differences with and without adaptive step size, iterated running medians, least angle regression, piecewise-linear regularization path following, or coordinate descent. Using this generalized functional, we introduce several novel PWC denoising methods, which, for example, combine the global behaviour of mean shift clustering with the local smoothing of total variation diffusion, and show example solver algorithms for these new methods. Head-to-head comparisons between these methods are performed on synthetic data, revealing that our new methods have a useful role to play. Finally, overlaps between the generalized methods of this paper and others such as wavelet shrinkage, hidden Markov models, and piecewise smooth filtering are touched on.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized methods and solvers for noise removal from piecewise constant signals. II. New methods.

Removing noise from signals which are piecewise constant (PWC) is a challenging signal processing problem that arises in many practical scientific and engineering contexts. In the first paper (part I) of this series of two, we presented background theory building on results from the image processing community to show that the majority of these algorithms, and more proposed in the wider literatu...

متن کامل

Generalized methods and solvers for noise removal from piecewise constant signals. I. Background theory.

Removing noise from piecewise constant (PWC) signals is a challenging signal processing problem arising in many practical contexts. For example, in exploration geosciences, noisy drill hole records need to be separated into stratigraphic zones, and in biophysics, jumps between molecular dwell states have to be extracted from noisy fluorescence microscopy signals. Many PWC denoising methods exis...

متن کامل

A Unique Approach of Noise Elimination from Electroencephalography Signals between Normal and Meditation State

In this paper, unique approach is presented for the electroencephalography (EEG) signals analysis. This is based on Eigen values distribution of a matrix which is called as scaled Hankel matrix. This gives us a way to find out the number of Eigen values essential for noise reduction and extraction of signal in singular spectrum analysis. This paper gives us an approach to classify the EEG signa...

متن کامل

Higher Order Variational Methods for Noise Removal in Signals and Images Diploma Thesis

Preface Variational methods have become more and more important in image processing during the last years. They offer an intuitive way to understand the noise removal and image restoration process as minimisation of an energy functional. This energy functional provides the opportunity to compare the quality of two filtered versions of the same input image and thus can be seen as a quality measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010